Search for Partonic EoS in High-Energy Collisions

Nu Xu

Lawrence Berkeley National Laboratory

Many Thanks to Organizers!

X. Dong, H. Huang, M. Oldenburg, H.G. Ritter, K. Schweda, P. Sorensen, A. Tai, Z. Xu

Outline

- Motivation
- \triangleright Bulk properties ∂P_{QCD}
 - Hadron spectra and elliptic flow
 - NCQ scaling: deconfinement
 - Heavy flavor collectivity: thermalization
- Summary & Outlook

Equation of State

$$\begin{split} \partial_{\square} T^{\square\square} &= 0 \\ \partial_{\square} j^{\square} &= 0 \qquad \qquad j^{\square}(x) = n(x) u^{\square}(x) \\ T^{\square\square} &= \left[\square(x) + p(x) \right] u^{\square} u^{\square} \square g^{\square\square} \square p(x) \end{split}$$

With given degrees of freedom, the EOS - the system response to the changes of the thermal condition - is fixed by its p and T (\square).

Equation of state:

- **EOS I**: relativistic ideal gas: *p* = □/3

- **EOS H**: resonance gas: *p* ~ □/6

- EOS Q: Maxwell construction:

 T_{crit} = 165 MeV, $B^{1/4}$ = 0.23 GeV Π_{at} =1.15 GeV/fm³

P. Kolb et al., Phys. Rev. C62, 054909 (2000).

Pressure, Flow, ...

$\square d\square = dU + pdV$

 \square - entropy; p - pressure; U - energy; V - volume \square = k_BT , thermal energy per dof

In high-energy nuclear collisions, interaction among constituents and density distribution will lead to: pressure gradient [] collective flow	
	number of degrees of freedom (dof)
	Equation of State (EOS)
	No thermalization is needed – pressure gradient only
dep	pends on the <i>density gradient and interactions</i> .
	Space-time-momentum correlations!

Collectivity, Local thermalization

High-energy Nuclear Collisions

Initial Condition

- initial scatterings
- baryon transfer
- E_T production
- parton dof

System Evolves

- parton interaction
- parton/hadron expansion

Bulk Freeze-out

- hadron dof
- interactions stop

High-energy Nuclear Collisions

Initial Condition

- initial scatterings
- baryon transfer
- E_T production
- parton dof

System Evolves

- parton interaction
- parton/hadron expansion

Bulk Freeze-out

- hadron dof
- interactions stop

Transverse Flow Observables

$$\frac{dN}{p_t dp_t dy d//} = \frac{1}{2//} \frac{dN}{p_t dp_t dy} \left[\frac{1}{1} + \frac{1}{1} 2v_t \cos(i//) \right]$$

$$p_t = \sqrt{p_x^2 + p_y^2}, \qquad m_t = \sqrt{p_t^2 + m^2}$$

As a function of particle mass:

- Directed flow (v₁) early see Markus Oldenburg's talk
- Elliptic flow (v_2) early
- Radial flow integrated over whole evolution

Note on collectivity:

- 1) Effect of collectivity is accumulative final effect is the sum of all processes.
- 2) Thermalization is not needed to develop collectivity pressure gradient depends on density gradient and interactions.

mid-rapidity, p+p and Au+Au collisions at 200 GeV

$$m_T = \sqrt{p_T^2 + m^2}$$

Results from BRAHMS, PHENIX, and STAR experiments

Thermal model fit

Source is assumed to be:

- Local thermal equilibrated
- Boosted radially

Thermal fits: T_{fo} vs. $< \square_{\square} >$

200GeV Au + Au collisions

<u>Chemical Freeze-out:</u> inelastic interactions stop Kinetic Freeze-out: elastic interactions stop

- ∫, K, and p change smoothly from peripheral to central collisions.
- 2) At the most central collisions, <□_T> reaches 0.6c.
- 3) Multi-strange particles \square , \square are found at higher T_{fo} $(\mathsf{T}\sim\mathsf{T}_{\mathsf{ch}})$ and lower $<\!\square_{\mathsf{T}}\!>$
- ⇒ Sensitive to early partonic stage!
- \Rightarrow How about v_2 ?

Data: STAR: NPA715, 458c(03); PRL

92, 112301(04); **92**, 182301(04).

NA49: nucl-ex/0409004

Chemical fits: Braun-Munzinger, Redlich,

Stachel, nucl-th/0304013

Resonance decay tests

- (1) Resonance decay of [], [], [] do not affect the freeze-out properties there are life after the chemical freeze-out!
- (2) 'Jets' lead to finite in p+p collisions

Zhixu Liu et al., December 2004.

Compare with Model Results

Model results fit to \square , K, p spectra well, but over predicted $< p_T >$ for multi-strange hadrons - **Do they freeze-out earlier?**

Phys. Rev. <u>C69</u> 034909 (04); Phys. Rev. Lett. <u>92</u>, 112301(04); <u>92</u>, 182301(04); P. Kolb et al., Phys. Rev. <u>C67</u> 044903(03)

Anisotropy Parameter v₂

coordinate-space-anisotropy

momentum-space-anisotropy

$$v_2 = \langle \cos 2 \square \rangle, \quad \square = \tan^{\square 1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

v₂ at low p_T region

- Minimum bias data! At low p_T, model result fits mass hierarchy well!
- Details does not work, need more flow in the model!

BERKELEY LAB //Talk/2005/01Hirschegg05//

v_2 at all p_T

- v₂, spectra of light hadrons and multi-strange hadrons
- scaling of the number of constituent quarks

At RHIC:

- ⇒ Partonic collectivity has been attained
- □ Deconfinement has has been attained

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04)

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

. . . .

Partonic Collectivity at RHIC

1) Copiously produced hadrons freeze-out: $T_{fo} = 100 \text{ MeV}, \qquad \Box_{T} = 0.6 \text{ (c)} > \Box_{T}(\text{SPS})$

2)* Multi-strange hadrons freeze-out:

$$T_{fo} = 160-170 \text{ MeV } (\sim T_{ch}), \quad \Box_{T} = 0.4 \text{ (c)}$$

- 3)** Multi-strange v₂:

 Multi-strange hadrons [] and [] flow!
- 4)*** Constituent Quark scaling: Seems to work for v₂ and R_{AA} (R_{CP})

Deconfinement
Partonic (u,d,s) Collectivity

Time Scale

Collision Time

- 1) Coalescence processes occur during phase transition and hadronization;
- 2) The u-,d-quarks and 'bound-states' gain mass accompanied by expansion;
- 3) Early thermalization with partons and its duration need to be checked.

Open charm production at RHIC

- First reconstructed open charm spectrum at RHIC

Model:

- a) pQCD distributions are steeper
- b) Fragmentation with delta function has harder spectrum
- c) Total cross sections are lower, a factor of 3-5

- STAR data: A. Tai et al., J. Phys **G30**:

S809(2004); nucl-ex/0404029

- model results: R. Vogt, 2004

Charm production

1) STAR and PHENIX results are different:

- 2) NLO pQCD calculations under-predict the ccbar production cross section at RHIC
- 3) Power law for ccbar cross section from SPS to RHIC:
 n ~ 2
 (n~0.5 for charged hadrons)
- 4) Large uncertainties in total cross section due to rapidity width, model dependent(?).

STAR data: PRL accepted, nucl-ex/0407006

Non-photonic electron v₂

STAR: 0-80% (F.Laue SQM04) statistical error only corrected for e[±] from [] decay

PHENIX: Minimum bias

M. Kaneta et al, J.Phys. **G30**, S1217(04)

Open charm v₂ - a comparison

- 1) Constituent Quark Scaling for open charm hadron production?
- 2) Flow of charm-quark and the thermalization among light flavors?
- 3) ...????

HSD: E. Bratkovskaya et al., hep-ph/0409071 X. Dong, S. Esumi, et al., Phys. Lett. <u>**B597**</u>, 328(2004).

Summary & Outlook

- (1) Collectivity pressure gradient ∂P_{QCD}
 - Deconfinement and partonic collectivity at RHIC
- (2) Partonic (u,d,s) thermalization
 - heavy flavor v₂ and spectra
 - di-lepton and thermal photon spectra
 - J/□ production
- (3) -vertex upgrades Phenix and STAR
 - open charm
 - resonances with both hadronic & leptonic decays

STAR []-vertex detector

H. Wieman et al., STAR Collaboration

Bulk Freeze-out Systematics

The additional increase in \square_T is likely due to partonic pressure at RHIC.

- 1) v₂ self-quenching, hydrodynamic model seem to work at low p_T
- 2) Multi-strange hadron freeze-out earlier, $T_{fo} \sim T_{ch}$
- 3) Multi-strang hadron show strong v₂

Nuclear Modification Factor

$$R_{CP}(p_T) = \frac{d^2N^{central} I(N_{binary}^{central} dp_T dy)}{d^2N^{peripheral} I(N_{binary}^{peripheral} dp_T dy)}$$

- (K⁰, □): PRL**92**, 052303(04); NP**A715**, 466c(03);
- Greco et al, PRC68,034904(03);PRL90, 202102(03)
- R. Fries et al, PRC68, 044902(03);), Hwa, nucl-th/0406072

- 1) Baryon vs. meson effect!
- 2) Hadronization via coalescence
- 3) Parton thermalization (model)